If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+4t-39=0
a = 16; b = 4; c = -39;
Δ = b2-4ac
Δ = 42-4·16·(-39)
Δ = 2512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2512}=\sqrt{16*157}=\sqrt{16}*\sqrt{157}=4\sqrt{157}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{157}}{2*16}=\frac{-4-4\sqrt{157}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{157}}{2*16}=\frac{-4+4\sqrt{157}}{32} $
| s/4-9=-5 | | 6(7x+7)=7(6x=6) | | 6n=9n-12 | | 4-2(x+5)-1=21 | | -2+7x-x^2=10 | | 6(x-4)=-4x+26 | | 0h=190−45h | | -2v-9=5-4v | | 6=5n+9n | | 1v=-3/4 | | 3×(x+12)=96 | | 4+-t=5 | | 2b=-10 | | 15x=20-13x^2 | | 6+5(m+1=26 | | -6x^2+12=0 | | 3(2a-5)-4a=2(a-3)-5 | | 4x-3-x=2x+1 | | −5x−25=78 | | ➗x-5+7=9 | | -9d=-5d–8 | | -2(x-2)+4=16 | | -19=5k-8+6k | | 15x=20-13^2 | | 2y+y^2-128=0 | | 2y²-10y+12=0 | | 9+9x=13+8x | | 3d+4=2+3d=1/2 | | -6+8x=2x-14 | | 2x-19=-x | | 3d+4=2+3d+1/2 | | 2(2x+4)=((24*3/4)-(8x*3/4)) |